
Phake - PHP Mocking Framework
Documentation

Release 1.0.3

Mike Lively <m@digitalsandwich.com>

Apr 12, 2021

Contents

1 Introduction to Phake 1

2 Getting Started 5
2.1 Composer Install . 5
2.2 Install from Source . 5
2.3 Support . 6

3 Creating Mocks 7
3.1 Partial Mocks . 7
3.2 Calling Private and Protected Methods on Mocks . 8

4 Method Stubbing 11
4.1 How Phake::when() Works . 14
4.2 Overwriting Existing Stubs . 15
4.3 Resetting A Mock’s Stubs . 17
4.4 Stubbing Multiple Calls . 17
4.5 Stubbing Consecutive Calls . 19
4.6 Stubbing Reference Parameters . 20
4.7 Partial Mocks . 22
4.8 Setting Default Stubs . 23
4.9 Stubbing Magic Methods . 23

5 Method Verification 25
5.1 Verifying Method Parameters . 26
5.2 Verifying Multiple Invocations . 26
5.3 Verifying Calls Happen in a Particular Order . 27
5.4 Verifying No Interaction with a Mock so Far . 28
5.5 Verifying No Further Interaction with a Mock . 28
5.6 Verifying No Unverified Interaction with a Mock . 28
5.7 Verifying Magic Methods . 29

6 Mocking Static Methods 31

7 Answers 33
7.1 Throwing Exceptions . 33
7.2 Calling the Parent . 34
7.3 Capturing a Return Value . 35

i

7.4 Answer Callbacks . 35
7.5 Custom Answers . 35

8 Method Parameter Matchers 37
8.1 Using PHPUnit Matchers . 38
8.2 Using Hamcrest Matchers . 38
8.3 Wildcard Parameters . 39
8.4 Parameter Capturing . 40
8.5 Custom Parameter Matchers . 42

9 Configuration 43
9.1 Setting the Phake Client . 43
9.2 Setting the Mock Class Loader . 43

10 Indices and tables 45

ii

CHAPTER 1

Introduction to Phake

Phake is a mocking framework for PHP. It allows for the creation of objects that mimic a real object in a predictable
and controlled manner. This allows you to treat external method calls made by your system under test (SUT) as just
another form of input to your SUT and output from your SUT. This is done by stubbing methods that supply indirect
input into your test and by verifying parameters to methods that receive indirect output from your test.

In true Las Vegas spirit I am implementing a new framework that allows you to easily create new card games. Most
every card game at one point or another needs a dealer. In the example below I have created a new class called
CardGame that implements the basic functionality for a card game:

class CardGame
{

private $dealerStrategy;
private $deck;
private $players;

public function CardGame(DealerStrategy $dealerStrategy, CardCollection $deck,
→˓PlayerCollection $players)

{
$this->dealerStrategy = $dealerStrategy;
$this->deck = $deck;
$this->players = $players;

}

public function dealCards()
{

$this->deck->shuffle();
$this->dealerStrategy->deal($deck, $players);

}
}

If I want to create a new test to ensure that dealCards() works properly, what do I need to test? Everything I read
about testing says that I need to establish known input for my test, and then test its output. However, in this case, I
don’t have any parameters that are passed into dealCards() nor do I have any return values I can check. I could
just run the dealCards() method and make sure I don’t get any errors or exceptions, but that proves little more
than my method isn’t blowing up spectacularly. It is apparent that I need to ensure that what I actually assert is that the

1

Phake - PHP Mocking Framework Documentation, Release 1.0.3

shuffle() and deal() methods are being called. If I want to continue testing this using concrete classes that al-
ready exist in my system, I could conjure up one of my implementations of DealerStrategy, CardCollection
and PlayerCollection. All of those objects are closer to being true value objects with a testable state. I could
feasibly construct instances of those objects, pass them into an instance of CardGame, call dealCards() and then
assert the state of those same objects. A test doing this might look something like:

class CardGameTest1 extends PHPUnit_Framework_TestCase
{

public function testDealCards()
{

$dealer = new FiveCardPokerDealer();
$deck = new StandardDeck();
$player1 = new Player();
$player2 = new Player();
$player3 = new Player();
$player4 = new Player();
$players = new PlayerCollection(array($player1, $player2, $player3,

→˓$player4));

$cardGame = new CardGame($dealer, $deck, $players);
$cardGame->dealCards();

$this->assertEquals(5, count($player1->getCards()));
$this->assertEquals(5, count($player2->getCards()));
$this->assertEquals(5, count($player3->getCards()));
$this->assertEquals(5, count($player4->getCards()));

}
}

This test isn’t all that bad, it’s not difficult to understand and it does make sure that cards are dealt through making
sure that each player has 5 cards. There are at least two significant problems with this test however. The first problem
is that there is not any isolation of the SUT which in this case is dealCards(). If something is broken in the
FiveCardPokerDealer class, the Player class, or the PlayerCollection class, it will manifest itself here
as a broken CardGame class. Thinking about how each of these classes might be implemented, one could easily
make the argument that this really tests the FiveCardPokerDealer class much more than the dealCards()
method. The second problem is significantly more problematic. It is perfectly feasible that I could remove the call
to $this->deck->shuffle() in my SUT and the test I have created will still test just fine. In order to solidify
my test I need to introduce logic to ensure that the deck has been shuffled. With the current mindset of using real
objects in my tests I could wind up with incredibly complicated logic. I could feasibly add an identifier of some sort
to DealerStrategy::shuffle() to mark the deck as shuffled thereby making it checkable state, however that
makes my design more fragile as I would have to ensure that identifier was set probably on every implementation of
DealerStrategy::shuffle().

This is the type of problem that mock frameworks solve. A mock framework such as Phake can be used to create
implementations of my DealerStrategy, CardCollection, and PlayerCollection classes. I can then
exercise my SUT. Finally, I can verify that the methods that should be called on these objects were called correctly. If
this test were re-written to use Phake, it would become:

class CardGameTest2 extends PHPUnit_Framework_TestCase
{

public function testDealCards()
{

$dealer = Phake::mock('DealerStrategy');
$deck = Phake::mock('CardCollection');
$players = Phake::mock('PlayerCollection');

$cardGame = new CardGame($dealer, $deck, $players);
(continues on next page)

2 Chapter 1. Introduction to Phake

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

$cardGame->dealCards();

Phake::verify($deck)->shuffle();
Phake::verify($dealer)->deal($deck, $players);

}
}

There are three benefits of using mock objects that can be seen through this example. The first benefit is that the
brittleness of the fixture is reduced. In our previous example you see that I have to construct a full object graph based
on the dependencies of all of the classes involved. I am fortunate in the first example that there are only 4 classes
involved. In real world problems and especially long lived, legacy code the object graphs can be much, much larger.
When using mock objects you typically only have to worry about the direct dependencies of your SUT. Specifically,
direct dependencies required to instantiate the dependencies of the class under test, the parameters passed to the
method under test (direct dependencies,) and the values returned by additional method calls within the method under
test (indirect dependencies.)

The second benefit is the test is only testing the SUT. If this test fails due to a change in anything but the interfaces
of the classes involved, the change would have had to been made in either the constructor of CardGame, or the
dealCards()method itself. Obviously, if an interface change is made (such as removing the shuffle()) method,
then I would have a scenario where the changed code is outside of this class. However, provided the removal of that
method was intentional, I will know that this code needs to be addressed as it is depending on a method that no longer
exists.

The third benefit is that I have truer verification and assertions of the outcome of exercising my SUT. In this case
for instance, I can be sure that if the call to shuffle() is removed, this test will fail. It also does it in a way that
keeps the code necessary to assert your final state simple and concise. This makes my test overall much easier to
understand and maintain. There is still one flaw with this example however. There is nothing here to ensure that
shuffle() is called before deal() it is quite possible for someone to mistakenly reverse the order of these two
calls. The Phake framework does have the ability to track call order to make this test even more bullet proof via the
Phake::inOrder() method. I will go over this in more detail later.

3

Phake - PHP Mocking Framework Documentation, Release 1.0.3

4 Chapter 1. Introduction to Phake

CHAPTER 2

Getting Started

Phake depends on PHP 5.3.3 or greater. It has no dependency on PHPUnit and should be usable with any version of
PHPUnit so long as the PHP version is 5.3.3 or greater.

2.1 Composer Install

Phake can be installed via Composer. You will typically want to install Phake as a development requirement. To do so
you can add the following to your composer.json file:

{
// ..
"require-dev": {

"phake/phake": "@stable"
}
// ..

}

Once this is added to composer.json you can run composer update phake/phake

2.2 Install from Source

You can also clone a copy of Phake from the Phake GitHub repository. Every attempt is made to keep the master
branch stable and this should be usable for those that immediately need features before they get released or in the
event that you enjoy the bleeding edge. Always remember, until something goes into a rc state, there is always a
chance that the functionality may change. However as an early adopter that uses GitHub, you can have a chance to
mold the software as it is built.

5

https://github.com/composer/composer
https://github.com/mlively/Phake

Phake - PHP Mocking Framework Documentation, Release 1.0.3

2.3 Support

If you think you have found a bug or an issue with Phake, please feel free to open up an issue on the Phake Issue
Tracker

6 Chapter 2. Getting Started

https://github.com/mlively/Phake/issues
https://github.com/mlively/Phake/issues

CHAPTER 3

Creating Mocks

The Phake::mock() method is how you create new test doubles in Phake. You pass in the class name of what you
would like to mock.

$mock = Phake::mock('ClassToMock');

The $mock variable is now an instance of a generated class that inherits from ClassToMock with hooks that allow
you to force functions to return known values. By default, all methods on a mock object will return null. This behavior
can be overridden on a per method and even per parameter basis. This will be covered in depth in Method Stubbing.

The mock will also record all calls made to this class so that you can later verify that specific methods were called
with the proper parameters. This will be covered in depth in Method Verification.

In addition to classes you can also mock interfaces directly. This is done in much the same way as a class name, you
simply pass the interface name as the first parameter to Phake::mock().

$mock = Phake::mock('InterfaceToMock');

You can also pass an array of interface names to Phake::mock() that also contains up to 1 class name. This allows
for easier mocking of a dependency that is required to implement multiple interfaces.

$mock = Phake::mock(array('Interface1', 'Interface2'));

3.1 Partial Mocks

When testing legacy code, you may find that a better default behavior for the methods is to actually call the original
method. This can be accomplished by stubbing each of the methods to return thenCallParent(). You can learn
more about this in then-call-parent.

While this is certainly possible, you may find it easier to just use a partial mock in Phake. Phake partial mocks also al-
low you to call the actual constructor of the class being mocked. They are created using Phake::partialMock().
Like Phake::mock(), the first parameter is the name of the class that you are mocking. However, you can pass
additional parameters that will then be passed as the respective parameters to that class’ constructor. The other notable

7

Phake - PHP Mocking Framework Documentation, Release 1.0.3

feature of a partial mock in Phake is that its default answer is to pass the call through to the parent as if you were using
thenCallParent().

Consider the following class that has a method that simply returns the value passed into the constructor.

class MyClass
{

private $value;

public __construct($value)
{

$this->value = $value;
}

public function foo()
{

return $this->value;
}

}

Using Phake::partialMock() you can instantiate a mock object that will allow this object to function as de-
signed while still allowing verification as well as selective stubbing of certain calls. Below is an example that shows
the usage of Phake::partialMock().

class MyClassTest extends PHPUnit_Framework_TestCase
{

public function testCallingParent()
{

$mock = Phake::partialMock('MyClass', 42);

$this->assertEquals(42, $mock->foo());
}

}

Again, partial mocks should not be used when you are testing new code. If you find yourself using them be sure to
inspect your design to make sure that the class you are creating a partial mock for is not doing too much.

3.2 Calling Private and Protected Methods on Mocks

Beginning in Phake 2.1 it is possible to invoke protected and private methods on your mocks using Phake. When you
mock a class, the mocked version will retain the same visibility on each of its functions as you would have had on
your original class. However, using Phake::makeVisible() and Phake::makeStaticsVisible() you
can allow direct invocation of instance methods and static methods accordingly. Both of these methods accept a mock
object as its only parameter and returns a proxy class that you can invoke the methods on. Method calls on these
proxies will still return whatever value was previously stubbed for that method call. So if you intend on the original
method being called and you aren’t using Partial Mocks, then you can just enable calling-the-parent for that method
call using the thenCallParent() answer. This is all discussed in greater depth in method-stubbing and Answers.

class MyClass
{

private function foo()
{
}

private static function bar()

(continues on next page)

8 Chapter 3. Creating Mocks

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

{
}

}

Given the class above, you can invoke both private methods with the code below.

$mock = Phake::mock('MyClass');

Phake::makeVisible($mock)->foo();

Phake::makeStaticVisible($mock)->bar();

//Both calls below will STILL fail
$mock->foo();
$mock::bar();

As you can see above when using the static variant you still call the method as though it were an instance
method. The other thing to take note of is that there is no modification done on $mock itself. If you use
Phake::makeVisible() you will only be able to make those private and protected calls off of the return of
that method itself.

3.2. Calling Private and Protected Methods on Mocks 9

Phake - PHP Mocking Framework Documentation, Release 1.0.3

10 Chapter 3. Creating Mocks

CHAPTER 4

Method Stubbing

The Phake::when() method is used to stub methods in Phake. As discussed in the introduction, stubbing allows an
object method to be forced to return a particular value given a set of parameters. Similarly to Phake::verify(),
Phake::when() accepts a mock object generated from Phake::mock() as its first parameter.

Imagine I was in the process of building the next great online shopping cart. The first thing any good shopping cart
allows is to be able to add items. The most important thing I want to know from the shopping cart is how much money
in merchandise is in there. So, I need to make myself a ShoppingCart class. I also am going to need some class to
define my items. I am more worried about the money right now and because of that I am keenly aware that any item
in a shopping cart is going to have a price. So I will just create an interface to represent those items called Item. Now
take a minute to marvel at the creativity of those names. Great, now check out the initial definitions for my objects.

/**
* An item that is going to make me rich.

*/
interface Item
{

/**
* @return money

*/
public function getPrice();

}

/**
* A customer's cart that will contain items that are going to make me rich.

*/
class ShoppingCart
{

private $items = array();

/**
* Adds an item to the customer's order

* @param Item $item

*/
public function addItem(Item $item)

(continues on next page)

11

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

{
$this->items[] = $item;

}

/**
* Returns the current sub total of the customer's order

* @return money

*/
public function getSubTotal()
{
}

}

So, I am furiously coding away at this fantastic new ShoppingCart class when I realize, I am doing it wrong! You
see, a few years ago I went to this conference with a bunch of other geeky people to talk about how to make quality
software. I am supposed to be writing unit tests. Here I am, a solid thirteen lines (not counting comments) of code
into my awe inspiring new software and I haven’t written a single test. I tell myself, “There’s no better time to change
than right now!” So I decide to start testing. After looking at the options I decide PHPUnit with this sweet new mock
library called Phake is the way to go.

My first test is going to be for the currently unimplemented ShoppingCart::getSubTotal()method. I already
have a pretty good idea of what this function is going to need to do. It will need to look at all of the items in the cart, re-
trieve their price, add it all together and return the result. So, in my test I know I am going to need a fixture that sets up a
shopping cart with a few items added. Then I am going to need a test that calls ShoppingCart::getSubTotal()
and asserts that it returns a value equal to the price of the items I added to the cart. One catch though, I don’t have any
concrete instances of an Item. I wasn’t even planning on doing any of that until tomorrow. I really want to just focus
on the ShoppingCart class. Never fear, this is why I decided to use Phake. I remember reading about how it will
allow me to quickly create instance of my classes and interfaces that I can set up stubs for so that method calls return
predictable values. This project is all coming together and I am really excited.

class ShoppingCartTest extends PHPUnit_Framework_TestCase
{

private $shoppingCart;

private $item1;

private $item2;

private $item3;

public function setUp()
{

$this->item1 = Phake::mock('Item');
$this->item2 = Phake::mock('Item');
$this->item3 = Phake::mock('Item');

Phake::when($this->item1)->getPrice()->thenReturn(100);
Phake::when($this->item2)->getPrice()->thenReturn(200);
Phake::when($this->item3)->getPrice()->thenReturn(300);

$this->shoppingCart = new ShoppingCart();
$this->shoppingCart->addItem($this->item1);
$this->shoppingCart->addItem($this->item2);
$this->shoppingCart->addItem($this->item3);

}

(continues on next page)

12 Chapter 4. Method Stubbing

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

public function testGetSub()
{

$this->assertEquals(600, $this->shoppingCart->getSubTotal());
}

}

My test here shows a very basic use of Phake for creating method stubs. I am creating three different mock implemen-
tations of the Item class. Then for each of those item classes, I am creating a stub using Phake::when() that will
return 100, 200, and 300 respectively. I know my method that I am getting ready to implement will need to call those
methods in order to calculate the total cost of the order.

My test is written so now it is time to see how it fails. I run it with phpunit and see the output below:

$ phpunit ExampleTests/ShoppingCartTest.php
PHPUnit 3.5.13 by Sebastian Bergmann.

F

Time: 0 seconds, Memory: 8.50Mb

There was 1 failure:

1) ShoppingCartTest::testGetSub
Failed asserting that <null> matches expected <integer:600>.

/home/mikel/Documents/Projects/Phake/tests/ShoppingCartTest.php:69

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

Generating code coverage report, this may take a moment.

Now that I have a working (and I by working I mean breaking!) test it is time to look at the code necessary to make
the test pass.

class ShoppingCart
{

// I am cutting out the already seen code. If you want to see it again look at
→˓the previous examples!

/**
* Returns the current sub total of the customer's order

* @return money

*/
public function getSubTotal()
{

$total = 0;

foreach ($this->items as $item)
{

$total += $item->getPrice();
}

return $total;
}

}

13

Phake - PHP Mocking Framework Documentation, Release 1.0.3

The code here is pretty simple. I am just iterating over the ShoppingCart::$item property, calling the
Item::getPrice() method, and adding them all together. Now when I run phpunit, the tests were successful
and I am getting off to a great start with my shopping cart.

$ phpunit ExampleTests/ShoppingCartTest.php
PHPUnit 3.5.13 by Sebastian Bergmann.

.

Time: 0 seconds, Memory: 8.25Mb

OK (1 test, 1 assertion)

Generating code coverage report, this may take a moment.

So, what is Phake doing here? Phake is providing us a predictable implementation of the Item::getPrice()
method that we can use in our test. It helps me to ensure the when my test breaks I know exactly where it is breaking.
I will not have to be worried that a bad implementation of Item::getPrice() is breaking my tests.

4.1 How Phake::when() Works

Internally Phake is doing quite a bit when this test runs. The three calls to Phake::mock() are creating three new
classes that in this case each implement the Item interface. These new classes each define implementations of any
method defined in the Item interface. If Item extended another interface, implementations of all of that parent’s
defined methods would be created as well. Each method being implemented in these new classes does a few different
things. The first thing that it does is record the fact that the method was called and stores the parameters that were used
to call it. The next significant thing it does is looks at the stub map for that mock object. The stub map is a map that
associates answers to method matchers. An answer is what a mocked object will return when it is called. By default, a
call to a mock object returns a static answer of NULL. We will discuss answers more in Answers. A method matcher
has two parts. The first is the method name. The second is an array of arguments. The array of arguments will then
contain various constraints that are applied to each argument to see if a given argument will match. The most common
constraint is an equality constraint that will match loosely along the same lines as the double equals sign in PHP. We
will talk about matchers more in Method Parameter Matchers.

When each mock object is initially created, its stub map will be empty. This means that any call to a method
on a mock object is going to return a default answer of NULL. If you want your mock object’s methods to re-
turn something else you must add answers to the stub map. The Phake::when() method allows you to map
an answer to a method matcher for a given mock object. The mock object you want to add the mapping to is
passed as the first parameter to Phake::when(). The Phake::when() method will then return a proxy that
can be used add answers to your mock object’s stub map. The answers are added by making method calls on
the proxy just as you would on the mock object you are proxying. In the first example above you saw a call to
Phake::when($this->item1)->getPrice(). The getPrice() call here was telling Phake that I am
about to define a new answer that will be returned any time $this->item->getPrice() is called in my code.
The call to $this->item->getPrice() returns another object that you can set the answer on using Phake’s flu-
ent api. In the example I called Phake::when($this->item1)->getPrice()->thenReturn(100). The
thenReturn() method will bind a static answer to a matcher for getPrice() in the stub map for $this->item1.

4.1.1 Why do Phake stubs return Null by default?

The reasoning behind this is that generally speaking, each method you test should depend on only what it needs to
perform the (hopefully one) responsibility assigned to it. Normally you will have very controlled delegation to other
objects. To help with localization of errors in your test it is assumed that you will always want to mock external
dependencies to keep them from influencing the results of unit tests dedicated to the behavior of other parts of the

14 Chapter 4. Method Stubbing

Phake - PHP Mocking Framework Documentation, Release 1.0.3

system. Another reason for this default behavior is that it provides consistent and predictable behavior regardless of
whether you are testing concrete classes, abstract classes, or interfaces. It should be noted that this default behavior
for concrete methods in classes is different then the default behavior in PHPUnit. In PHPUnit, you have to explicitly
indicate that you are mocking a method, otherwise it will call the actual method code. There are certainly cases where
this is useful and this behavior can be achieved in Phake. I will discuss this aspect of Phake in Partial Mocks.

4.2 Overwriting Existing Stubs

My shopping cart application is coming right along. I can add items and the total price seems to be accurate. However,
while I was playing around with my new cart I noticed a very strange problem. I was playing around with the idea
of allowing discounts to be applied to a cart as just additional items that would have a negative price. So while I am
playing around with this idea I notice that the math isn’t always adding up. If I start with an item that is $100 and then
add a discount that is $81.40 I see that the total price isn’t adding up to $18.60. This is definitely problematic After
doing some further research, I realize I made a silly mistake. I am just using simple floats to calculate the costs. Floats
are by nature inaccurate. Once you start using them in mathematical operations they start to show their inadequacy for
precision. In keeping with the test driven method of creating code I need to create a unit test that shows this flaw.

class ShoppingCartTest extends PHPUnit_Framework_TestCase
{

private $shoppingCart;

private $item1;

private $item2;

private $item3;

public function setUp()
{

$this->item1 = Phake::mock('Item');
$this->item2 = Phake::mock('Item');
$this->item3 = Phake::mock('Item');

Phake::when($this->item1)->getPrice()->thenReturn(100);
Phake::when($this->item2)->getPrice()->thenReturn(200);
Phake::when($this->item3)->getPrice()->thenReturn(300);

$this->shoppingCart = new ShoppingCart();
$this->shoppingCart->addItem($this->item1);
$this->shoppingCart->addItem($this->item2);
$this->shoppingCart->addItem($this->item3);

}

public function testGetSub()
{

$this->assertEquals(600, $this->shoppingCart->getSubTotal());
}

public function testGetSubTotalWithPrecision()
{

$this->item1 = Phake::mock('Item');
$this->item2 = Phake::mock('Item');
$this->item3 = Phake::mock('Item');

Phake::when($this->item1)->getPrice()->thenReturn(100);

(continues on next page)

4.2. Overwriting Existing Stubs 15

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

Phake::when($this->item2)->getPrice()->thenReturn(-81.4);
Phake::when($this->item3)->getPrice()->thenReturn(20);

$this->shoppingCart = new ShoppingCart();
$this->shoppingCart->addItem($this->item1);
$this->shoppingCart->addItem($this->item2);
$this->shoppingCart->addItem($this->item3);

$this->assertEquals(38.6, $this->shoppingCart->getSubTotal());
}

}

You can see that I added another test method that uses actual floats for some of the prices as opposed to round numbers.
Now when I run my test suite I can see the fantastic floating point issue.

$ phpunit ExampleTests/ShoppingCartTest.php
PHPUnit 3.5.13 by Sebastian Bergmann.

.F

Time: 0 seconds, Memory: 10.25Mb

There was 1 failure:

1) ShoppingCartTest::testGetSubTotalWithPrecision
Failed asserting that <double:38.6> matches expected <double:38.6>.

/home/mikel/Documents/Projects/Phake/tests/ShoppingCartTest.php:95

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

Generating code coverage report, this may take a moment.

Once you get over the strangeness of 38.6 not equaling 38.6 I want to discuss streamlining test cases with you.
You will notice that the code in ShoppingCartTest::testGetSubTotalWithPrecision() contains al-
most all duplicate code when compared to ShoppingCartTest::setUp(). If I were to continue following
this pattern of doing things I would eventually have tests that are difficult to maintain. Phake allows you to very
easily override stubs. This is very important in helping you to reduce duplication in your tests and leads to tests
that will be easier to maintain. To overwrite a previous stub you simply have to redefine it. I am going to change
ShoppingCartTest::testGetSubTotalWithPrecision() to instead just redefine the getPrice()
stubs.

class ShoppingCartTest extends PHPUnit_Framework_TestCase
{

private $shoppingCart;

private $item1;

private $item2;

private $item3;

public function setUp()
{

$this->item1 = Phake::mock('Item');

(continues on next page)

16 Chapter 4. Method Stubbing

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

$this->item2 = Phake::mock('Item');
$this->item3 = Phake::mock('Item');

Phake::when($this->item1)->getPrice()->thenReturn(100);
Phake::when($this->item2)->getPrice()->thenReturn(200);
Phake::when($this->item3)->getPrice()->thenReturn(300);

$this->shoppingCart = new ShoppingCart();
$this->shoppingCart->addItem($this->item1);
$this->shoppingCart->addItem($this->item2);
$this->shoppingCart->addItem($this->item3);

}

public function testGetSub()
{

$this->assertEquals(600, $this->shoppingCart->getSubTotal());
}

public function testGetSubTotalWithPrecision()
{

Phake::when($this->item1)->getPrice()->thenReturn(100);
Phake::when($this->item2)->getPrice()->thenReturn(-81.4);
Phake::when($this->item3)->getPrice()->thenReturn(20);

$this->assertEquals(38.6, $this->shoppingCart->getSubTotal());
}

}

If you rerun this test you will get the same results shown in before. The test itself is much simpler though there is much
less unnecessary duplication. The reason this works is because the stub map I was referring to in How Phake::when()
Works isn’t really a map at all. It is more of a stack in reality. When a new matcher and answer pair is added to a mock
object, it is added to the top of the stack. Then whenever a stub method is called, the stack is checked from the top
down to find the first matcher that matches the method that was called. So, when I created the additional stubs for the
various Item::getPrice() calls, I was just adding additional matchers to the top of the stack that would always
get matched first by virtue of the parameters all being the same.

4.3 Resetting A Mock’s Stubs

If overriding a stub does not work for your particular case and you would rather start over with all default stubs then
you can use Phake::reset() and Phake::staticReset(). These will remove all stubs from a mock and
also empty out all recorded calls against a mock. Phake::reset() will do this for instance methods on the mock
and Phake::staticReset() will do this for all static methods on the mock.

4.4 Stubbing Multiple Calls

Another benefit of the stub mapping in Phake is that it allows you to very easily stub multiple calls to the same method
that use different parameters. In my shopping cart I have decided to add some functionality that will allow me to easily
add multiple products that are a part of a group to the shopping cart. To facilitate this I have decided to create a new
class called ItemGroup. The ItemGroup object will be constructed with an array of Items. It will have a method
on the class that will add all of the items in the group to the given cart and then the total price of items in the cart will
be returned.

4.3. Resetting A Mock’s Stubs 17

Phake - PHP Mocking Framework Documentation, Release 1.0.3

It should be noted that earlier I decided to make a small change to the ShoppingCart::addItem() method to
have it return the total price of items in the cart. I figured that this would be nice api level functionality to make
working with the system a little bit easier. I would like to take advantage of that change with this code. Here’s a stub
of the functionality I am considering.

/**
* A group of items that can be added to a cart all at the same time

*/
class ItemGroup
{

/**
* @param array $items an array of Item objects

*/
public function __construct(array $items)
{
}

/**
* @param ShoppingCart $cart

* @return money The new total value of the cart

*/
public function addItemsToCart(ShoppingCart $cart)
{
}

}

The next test I am going to write now is going to be focusing on this new ItemGroup::addItemsToCart()
method. In my test’s setUp() method I’ll create a new instance of ItemGroup which will require one or more
Item implementations. I’ll use mocks for those. Then the actual test case I am going to start with will be a test
to assert that ItemGroup::addItemsToCart() returns the new shopping cart value. I already know that I am
going to need to get this value by looking at the last return value from calls to ShoppingCart::addItem(). To
allow for checking this I will mock ShoppingCart and create three stubs for ShoppingCart::addItem().
Each stub will be for a call with a different Item.

class ItemGroupTest extends PHPUnit_Framework_TestCase
{

private $itemGroup;

private $item1;

private $item2;

private $item3;

public function setUp()
{

$this->item1 = Phake::mock('Item');
$this->item2 = Phake::mock('Item');
$this->item3 = Phake::mock('Item');

$this->itemGroup = new ItemGroup(array($this->item1, $this->item2, $this->
→˓item3));

}

public function testAddItemsToCart()
{

$cart = Phake::mock('ShoppingCart');

(continues on next page)

18 Chapter 4. Method Stubbing

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

Phake::when($cart)->addItem($this->item1)->thenReturn(10);
Phake::when($cart)->addItem($this->item2)->thenReturn(20);
Phake::when($cart)->addItem($this->item3)->thenReturn(30);

$totalCost = $this->itemGroup->addItemsToCart($cart);
$this->assertEquals(30, $totalCost);

}
}

In this example the ShoppingCart::addItem() method is being stubbed three times. Each time it is being
stubbed with a different parameter being passed to addItem(). This a good example of how parameters are also
checked whenever Phake looks at a mock object’s stub map for answers. The default behavior of argument matching
is again a loose equality check. Similar to how you would use the double equals operator in PHP. The other options
for argument matching are discussed further in Method Parameter Matchers.

4.5 Stubbing Consecutive Calls

The previous test was a great example for how you can make multiple stubs for a single method however in reality it is
not the best way for that particular test to be written. What if the Item objects in an ItemGroup aren’t stored in the
order they were passed in? I am needlessly binding my test to the order in which objects are stored. Phake provides
the ability to map multiple answers to the same stub. This is done simply by chaining the answers together. I could
rewrite the test from the previous chapter to utilize this feature of Phake.

class ItemGroupTest extends PHPUnit_Framework_TestCase
{

private $itemGroup;

private $item1;

private $item2;

private $item3;

public function setUp()
{

$this->item1 = Phake::mock('Item');
$this->item2 = Phake::mock('Item');
$this->item3 = Phake::mock('Item');

$this->itemGroup = new ItemGroup(array($this->item1, $this->item2, $this->
→˓item3));

}

public function testAddItemsToCart()
{

$cart = Phake::mock('ShoppingCart');
Phake::when($cart)->addItem(Phake::anyParameters())->thenReturn(10)

->thenReturn(20)
->thenReturn(30);

$totalCost = $this->itemGroup->addItemsToCart($cart);
$this->assertEquals(30, $totalCost);

}
}

4.5. Stubbing Consecutive Calls 19

Phake - PHP Mocking Framework Documentation, Release 1.0.3

You will notice a few of differences between this example and the example in Stubbing Multiple Calls. The first
difference is that there is only one call to Phake::when(). The second difference is that I have chained together
three calls to thenReturn(). The third difference is instead of passing one of my mock Item objects I have passed
the result of the Phake::anyParameters() method. This is a special argument matcher in Phake that essentially
says match any call to the method regardless of the number of parameters or the value of those parameters. You can
learn more about Phake::anyParameters() in wildcard-parameters.

So, this single call to Phake::when() is saying: “Whenever a call to $cart->addItem() is made, regardless of
the parameters, return 10 for the first call, 20 for the second call, and 30 for the third call.” If you are using consecutive
call stubbing and you call the method more times than you have answers set, the last answer will continue to be
returned. In this example, if $cart->addItem() were called a fourth time, then 30 would be returned again.

4.6 Stubbing Reference Parameters

Occasionally you may run into code that utilizes reference parameters to provide additional output from a method.
This is not an uncommon thing to run into with legacy code. Phake provides a custom parameter matcher (these are
discussed further in Method Parameter Matchers) that allows you to set reference parameters. It can be accessed using
Phake::setReference(). The only parameter to this matcher is the value you would like to set the reference
parameter to provided all other parameters match.

interface IValidator
{

/**
* @parm array $data Data to validate

* @parm array &$errors contains all validation errors if the data is not valid

* @return boolean True when the data is valid

*/
public function validate(array $data, array &$errors);

}

class ValidationLogger implements IValidator
{

private $validator;
private $log;

public function __construct(IValidator $validator, Logger $log)
{

$this->validator = $validator;
$this->log = $log;

}

public function validate(array $data, array &$errors)
{

if (!$this->validator->validate($data, $errors))
{

foreach ($errors as $error)
{

$this->log->info("Validation Error: {$error}");
}

return FALSE;
}

return TRUE;
}

(continues on next page)

20 Chapter 4. Method Stubbing

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

}

class ValidationLoggerTest extends PHPUnit_Framework_TestCase
{

public function testValidate()
{

//Mock the dependencies
$validator = Phake::mock('IValidator');
$log = Phake::mock('Logger');
$data = array('data1' => 'value');
$expectedErrors = array('data1 is not valid');

//Setup the stubs (Notice the Phake::setReference()
Phake::when($validator)->validate($data, Phake::setReference(

→˓$expectedErrors))->thenReturn(FALSE);

//Instantiate the SUT
$validationLogger = new ValidationLogger($validator, $log);

//verify the validation is false and the message is logged
$errors = array();
$this->assertFalse($validationLogger->validate($data, $errors));
Phake::verify($log)->info('Validation Error: data1 is not valid');

}
}

In the example above, I am testing a new class I have created called ValidationLogger. It is a dec-
orator for other implementations of IValidator that allows adding logging to any other validator. The
IValidator::validate() method will always return an array of errors into the second parameter (a refer-
ence parameter) provided to the method. These errors are what my logger is responsible for logging. So in order for
my test to work properly, I will need to be able to set that second parameter as a part of my stubbing call.

In the call to Phake::when($validator)->validate() I have passed a call to
Phake::setReference() as the second parameter. This is causing the mock implementation of IValidator
to set $errors in ValidationLogger::validate() to the array specified by $expectedErrors. This
allows me to quickly and easily validate that I am actually logging the errors returned back in the reference parameter.

By default Phake::setReference() will always return true regardless of the parameter initially passed in. If
you would like to only set a reference parameter when that reference parameter was passed in as a certain value you
can use the when() modifier. This takes a single parameter matcher as an argument. Below, you will see that the test
has been modified to call when() on the result of Phake::setReference()‘. This modification will cause the reference
parameter to be set only if the $errors parameter passed to IValidator::validate() is initially passed as an
empty array.

class ValidationLoggerTest extends PHPUnit_Framework_TestCase
{

public function testValidate()
{

//Mock the dependencies
$validator = Phake::mock('IValidator');
$log = Phake::mock('Logger');
$data = array('data1' => 'value');
$expectedErrors = array('data1 is not valid');

//Setup the stubs (Notice the Phake::setReference()
Phake::when($validator)->validate($data, Phake::setReference($expectedErrors)-

→˓>when(array())->thenReturn(FALSE);
(continues on next page)

4.6. Stubbing Reference Parameters 21

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

//Instantiate the SUT
$validationLogger = new ValidationLogger($validator, $log);

//verify the validation is false and the message is logged
$errors = array();
$this->assertFalse($validationLogger->validate($data, $errors));
Phake::verify($log)->info('Validation Error: data1 is not valid');

}
}

Please note, when you are using Phake::setReference() you still must provide an answer for the stub. If you
use this function and your reference parameter is never changed, that is generally the most common reason.

4.7 Partial Mocks

When testing legacy code, if you find that the majority of the methods in the mock are using the
thenCallParent() answer, you may find it easier to just use a partial mock in Phake. Phake partial mocks also al-
low you to call the actual constructor of the class being mocked. They are created using Phake::partialMock().
Like Phake::mock(), the first parameter is the name of the class that you are mocking. However, you can pass
additional parameters that will then be passed as the respective parameters to that class’ constructor. The other notable
feature of a partial mock in Phake is that its default answer is to pass the call through to the parent as if you were using
thenCallParent().

Consider the following class that has a method that simply returns the value passed into the constructor.

class MyClass
{

private $value;

public __construct($value)
{

$this->value = $value;
}

public function foo()
{

return $this->value;
}

}

Using Phake::partialMock() you can instantiate a mock object that will allow this object to function as de-
signed while still allowing verification as well as selective stubbing of certain calls. Below is an example that shows
the usage of Phake::partialMock().

class MyClassTest extends PHPUnit_Framework_TestCase
{

public function testCallingParent()
{

$mock = Phake::partialMock('MyClass', 42);

$this->assertEquals(42, $mock->foo());
}

}

22 Chapter 4. Method Stubbing

Phake - PHP Mocking Framework Documentation, Release 1.0.3

Again, partial mocks should not be used when you are testing new code. If you find yourself using them be sure to
inspect your design to make sure that the class you are creating a partial mock for is not doing too much.

4.8 Setting Default Stubs

You can also change the default stubbing for mocks created with Phake::mock(). This is done by using the second
parameter to Phake::mock() in conjunction with the Phake::ifUnstubbed()method. The second parameter
to Phake::mock() is reserved for configuring the behavior of an individual mock. Phake::ifUnstubbed()
allows you to specify any of the matchers mentioned above as the default answer if any method invocation is not
explicitly stubbed. If this configuration directive is not provided then the method will return NULL by default. An
example of this can be seen below.

class MyClassTest extends PHPUnit_Framework_TestCase
{

public function testDefaultStubs()
{

$mock = Phake::mock('MyClass', Phake::ifUnstubbed()->thenReturn(42));

$this->assertEquals(42, $mock->foo());
}

}

4.9 Stubbing Magic Methods

Most magic methods can be stubbed using the method name just like you would any other method. The one exception
to this is the __call() method. This method is overwritten on each mock already to allow for the fluent api that
Phake utilizes. If you want to stub a particular invocation of __call() you can create a stub for the method you are
targetting in the first parameter to __call().

Consider the following class.

class MagicClass
{

public function __call($method, $args)
{

return '__call';
}

}

You could stub an invocation of the __call()method through a userspace call to magicCall()with the following
code.

class MagicClassTest extends PHPUnit_Framework_TestCase
{

public function testMagicCall()
{

$mock = Phake::mock('MagicClass');

Phake::when($mock)->magicCall()->thenReturn(42);

$this->assertEquals(42, $mock->magicCall());
}

}

4.8. Setting Default Stubs 23

Phake - PHP Mocking Framework Documentation, Release 1.0.3

If for any reason you need to explicitly stub calls to __call() then you can use
Phake::whenCallMethodWith(). The matchers passed to Phake::whenCallMethod() will be
matched to the method name and array of arguments similar to what you would expect to be passed to a __call()
method. You can also use Phake::anyParameters() instead.

class MagicClassTest extends PHPUnit_Framework_TestCase
{

public function testMagicCall()
{

$mock = Phake::mock('MagicClass');

Phake::whenCallMethodWith('magicCall', array())->isCalledOn($mock)->
→˓thenReturn(42);

$this->assertEquals(42, $mock->magicCall());
}

}

24 Chapter 4. Method Stubbing

CHAPTER 5

Method Verification

The Phake::verify() method is used to assert that method calls have been made on a mock object that you can
create with Phake::mock(). Phake::verify() accepts the mock object you want to verify calls against. Mock
objects in Phake can almost be viewed as a tape recorder. Any time the code you are testing calls a method on an object
you create with Phake::mock() it is going to record the method that you called along with all of the parameters
used to call that method. Then Phake::verify() will look at that recording and allow you to assert whether or
not a certain call was made.

class PhakeTest1 extends PHPUnit_Framework_TestCase
{

public function testBasicVerify()
{

$mock = Phake::mock('MyClass');

$mock->foo();

Phake::verify($mock)->foo();
}

}

The Phake::verify() call here, verifies that the method foo() has been called once (and only once) with no
parameters on the object $mock. A very important thing to note here that is a departure from most (if not all) other
PHP mocking frameworks is that you want to verify the method call AFTER the method call takes place. Other
mocking frameworks such as the one built into PHPUnit depend on you setting the expectations of what will get called
prior to running the system under test.

Phake strives to allow you to follow the four phases of a unit test as laid out in xUnit Test Patterns: setup, exercise,
verify, and teardown. The setup phase of a test using Phake for mocking will now include calls to Phake::mock()
for each class you want to mock. The exercise portion of your code will remain the same. The verify section of your
code will include calls to Phake::verify(). The exercise and teardown phases will remain unchanged.

25

Phake - PHP Mocking Framework Documentation, Release 1.0.3

5.1 Verifying Method Parameters

Verifying method parameters using Phake is very simple yet can be very flexible. There are a wealth of options for
matching parameters that are discussed later on in Method Parameter Matchers.

5.2 Verifying Multiple Invocations

A common need for mock objects is the ability to have variable multiple invocations on that object. Phake allows you
to use Phake::verify() multiple times on the same object. A notable difference between Phake and PHPUnit’s
mocking framework is the ability to mock multiple invocations of the same method with no regard for call sequences.
The PHPUnit mocking test below would fail for this reason.

class MyTest extends PHPUnit_Framework_TestCase
{

public function testPHPUnitMock()
{

$mock = $this->getMock('PhakeTest_MockedClass');

$mock->expects($this->once())->method('fooWithArgument')
->with('foo');

$mock->expects($this->once())->method('fooWithArgument')
->with('bar');

$mock->fooWithArgument('foo');
$mock->fooWithArgument('bar');

}
}

The reason this test fails is because by default PHPUnit only allows a single expectation per method. The way you can
fix this is by using the at() matcher. This allows you to specify the index of the invocation you want to match again.
So to make the test above work you would have to change it.

class MyTest extends PHPUnit_Framework_TestCase
{

public function testPHPUnitMock()
{

$mock = $this->getMock('PhakeTest_MockedClass');

//NOTICE this is now at() instead of once()
$mock->expects($this->at(0))->method('fooWithArgument')

->with('foo');

//NOTICE this is now at() instead of once()
$mock->expects($this->at(1))->method('fooWithArgument')

->with('bar');

$mock->fooWithArgument('foo');
$mock->fooWithArgument('bar');

}
}

This test will now run as expected. There is still one small problem however and that is that you are now testing not
just the invocations but also the order of invocations. Many times the order in which two calls are made really do not
matter. If swapping the order of two method calls will not break your application then there is no reason to enforce

26 Chapter 5. Method Verification

Phake - PHP Mocking Framework Documentation, Release 1.0.3

that code structure through a unit test. Unfortunately, you cannot have multiple invocations of a method in PHPUnit
without enforcing call order. In Phake these two notions of call order and multiple invocations are kept completely
distinct. Here is the same test written using Phake.

class MyTest extends PHPUnit_Framework_TestCase
{

public function testPHPUnitMock()
{

$mock = Phake::mock('PhakeTest_MockedClass');

$mock->fooWithArgument('foo');
$mock->fooWithArgument('bar');

Phake::verify($mock)->fooWithArgument('foo');
Phake::verify($mock)->fooWithArgument('bar');

}
}

You can switch the calls around in this example as much as you like and the test will still pass. You can mock as many
different invocations of the same method as you need.

If you would like to verify the exact same parameters are used on a method multiple times (or they all match the same
constraints multiple times) then you can use the verification mode parameter of Phake::verify(). The second
parameter to Phake::verify() allows you to specify how many times you expect that method to be called with
matching parameters. If no value is specified then the default of one is used. The other options are:

• Phake::times($n) – Where $n equals the exact number of times you expect the method to be called.

• Phake::atLeast($n) – Where $n is the minimum number of times you expect the method to be called.

• Phake::atMost($n) – Where $n is the most number of times you would expect the method to be called.

• Phake::never() - Same as calling Phake::times(0).

Here is an example of this in action.

class MyTest extends PHPUnit_Framework_TestCase
{

public function testPHPUnitMock()
{

$mock = Phake::mock('PhakeTest_MockedClass');

$mock->fooWithArgument('foo');
$mock->fooWithArgument('foo');

Phake::verify($mock, Phake::times(2))->fooWithArgument('foo');
}

}

5.3 Verifying Calls Happen in a Particular Order

Sometimes the desired behavior is that you verify calls happen in a particular order. Say there is a functional rea-
son for the two variants of fooWithArgument() to be called in the order of the original test. You can utilize
Phake::inOrder() to ensure the order of your call invocations. Phake::inOrder() takes one or more argu-
ments and errors out in the event that one of the verified calls was invoked out of order. The calls don’t have to be in
exact sequential order, there can be other calls in between, it just ensures the specified calls themselves are called in

5.3. Verifying Calls Happen in a Particular Order 27

Phake - PHP Mocking Framework Documentation, Release 1.0.3

order relative to each other. Below is an example Phake test that behaves similarly to the PHPUnit test that utilized
at().

class MyTest extends PHPUnit_Framework_TestCase
{

public function testPHPUnitMock()
{

$mock = Phake::mock('PhakeTest_MockedClass');

$mock->fooWithArgument('foo');
$mock->fooWithArgument('bar');

Phake::inOrder(
Phake::verify($mock)->fooWithArgument('foo'),
Phake::verify($mock)->fooWithArgument('bar')

);
}

}

5.4 Verifying No Interaction with a Mock so Far

Occasionally you may want to ensure that no interactions have occurred with a mock object. This can be done by
passing your mock object to Phake::verifyNoInteraction($mock). This will not prevent further interac-
tion with your mock, it will simply tell you whether or not any interaction up to that point has happened. You can pass
multiple arguments to this method to verify no interaction with multiple mock objects.

5.5 Verifying No Further Interaction with a Mock

There is a similar method to prevent any future interaction with a mock. This can be done by passing a mock object
to Phake::verifyNoFurtherInteraction($mock). You can pass multiple arguments to this method to
verify no further interaction occurs with multiple mock objects.

5.6 Verifying No Unverified Interaction with a Mock

By default any unverified calls to a mock are ignored. That is to say, if a call is made to $mock->foo() but
Phake::verify($mock)->foo() is never used, then no failures are thrown. If you want to be stricter and ensure that
all calls have been verified you can call Phake::verifyNoOtherInteractions($mock) at the end of your test. This will
check and make sure that all calls to your mock have been verified by one or more calls to Phake verify. This method
should only be used in those cases where you can clearly say that it is important that your test knows about all calls on
a particular object. One useful case for instance could be in testing a method that returns a filtered array.

class FilterTest {
public function testFilteredList()
{

$filter = new MyFilter();
$list = Phake::Mock('MyList');

$filter->addEvenToList(array(1, 2, 3, 4, 5), $list);

Phake::verify($list)->push(2);

(continues on next page)

28 Chapter 5. Method Verification

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

Phake::verify($list)->push(4);

Phake::verifyNoOtherInteractions($list);
}

}

Without Phake::verifyNoOtherInteractions($list) you would have to add additional verifications that $list->push() was
not called for the odd values in the list. This method should be used only when necessary. Using it in every test is an
anti-pattern that will lead to brittle tests.

5.7 Verifying Magic Methods

Most magic methods can be verified using the method name just like you would any other method. The one exception
to this is the __call() method. This method is overwritten on each mock already to allow for the fluent api that
Phake utilizes. If you want to verify a particular invocation of __call() you can verify the actual method call by
mocking the method passed in as the first parameter.

Consider the following class.

class MagicClass
{

public function __call($method, $args)
{

return '__call';
}

}

You could mock an invocation of the __call() method through a userspace call to magicCall() with the following code.

class MagicClassTest extends PHPUnit_Framework_TestCase
{

public function testMagicCall()
{

$mock = Phake::mock('MagicClass');

$mock->magicCall();

Phake::verify($mock)->magicCall();
}

}

If for any reason you need to explicitly verify calls to __call() then you can use
Phake::verifyCallMethodWith().

class MagicClassTest extends PHPUnit_Framework_TestCase
{

public function testMagicCall()
{

$mock = Phake::mock('MagicClass');

$mock->magicCall(42);

Phake::verifyCallMethodWith('magicCall', array(42))->isCalledOn($mock);
}

}

5.7. Verifying Magic Methods 29

Phake - PHP Mocking Framework Documentation, Release 1.0.3

30 Chapter 5. Method Verification

CHAPTER 6

Mocking Static Methods

Phake can be used to verify as well as stub polymorphic calls to static methods. It is important to note that you cannot
verify or stub all static calls. In order for Phake to record or stub a method call, it needs to intercept the call so that it
can record it. Consider the following class

class StaticCaller
{

public function callStaticMethod()
{

Foo::staticMethod();
}

}

You will not be able to stub or verify the call to Foo::staticMethod() because the call was made directly on the class.
This prevents Phake from seeing that the call was made. However, say you have an abstract class that has an abstract
static method.

abstract class StaticFactory
{

protected static function factory()
{

// ...
}

public static function getInstance()
{

return static::factory();
}

}

In this case, because the static:: keyword will cause the called class to be determined at runtime, you will be
able to verify and stub calls to StaticFactory::factory(). It is important to note that if self::factory() was called then
stubs and verifications would not work, because again the class is determined at compile time with the self:: keyword.
The key thing to remember with testing statics using Phake is that you can only test statics that leverage Late Static
Binding: http://www.php.net/manual/en/language.oop5.late-static-bindings.php

31

http://www.php.net/manual/en/language.oop5.late-static-bindings.php

Phake - PHP Mocking Framework Documentation, Release 1.0.3

Phake has alternative methods to handle interacting with static methods on your mock class. Phake::mock() is
still used to create the mock class, but the remaining interactions with static methods use more specialized methods.
The table below shows the Phake methods that have a separate counterpart for interacting with static calls.

Instance Method Static Method
Phake::when() Phake::whenStatic()
Phake::verify() Phake::verifyStatic()
Phake::verifyCallMethodWith() Phake::verifyStaticCallMethodWith()
Phake::whenCallMethodWith() Phake::whenStaticCallMethodWith()
Phake::reset() Phake::resetStatic()

If you are using Phake to stub or verify static methods then you should call Phake::resetStaticInfo() in the
the tearDown() method. This is necessary to reset the stubs and call recorder for the static calls in the event that
the mock class gets re-used.

32 Chapter 6. Mocking Static Methods

CHAPTER 7

Answers

In all of the examples so far, the thenReturn() answer is being used. There are other answers that are remarkably
useful writing your tests.

7.1 Throwing Exceptions

Exception handling is a common aspect of most object oriented systems that should be tested. The key to being able
to test your exception handling is to be able to control the throwing of your exceptions. Phake allows this using the
thenThrow() answer. This answer allows you to throw a specific exception from any mocked method. Below is an
example of a piece of code that catches an exception from the method foo() and then logs a message with the exception
message.

class MyClass
{

private $logger;

public function __construct(LOGGER $logger)
{

$this->logger = $logger;
}

public function processSomeData(MyDataProcessor $processor, MyData $data)
{

try
{

$processor->process($data);
}
catch (Exception $e)
{

$this->logger->log($e->getMessage());
}

}
}

33

Phake - PHP Mocking Framework Documentation, Release 1.0.3

In order to test this we must mock foo() so that it throws an exception when it is called. Then we can verify that
log() is called with the appropriate message.

class MyClassTest extends PHPUnit_Framework_TestCase
{

public function testProcessSomeDataLogsExceptions()
{

$logger = Phake::mock('LOGGER');
$data = Phake::mock('MyData');
$processor = Phake::mock('MyDataProcessor');

Phake::when($processor)->process($data)->thenThrow(new Exception('My error
→˓message!'));

$sut = new MyClass($logger);
$sut->processSomeData($processor, $data);

//This comes from the exception we created above
Phake::verify($logger)->log('My error message!');

}
}

7.2 Calling the Parent

Phake provides the ability to allow calling the actual method of an object on a method by method basis by using the
thenCallParent() answer. This will result in the actual method being called. Consider the following class.

class MyClass
{

public function foo()
{

return '42';
}

}

The thenCallParent() answer can be used here to ensure that the actual method in the class is called resulting
in the value 42 being returned from calls to that mocked method.

class MyClassTest extends PHPUnit_Framework_TestCase
{

public function testCallingParent()
{

$mock = Phake::mock('MyClass');
Phake::when($mock)->foo()->thenCallParent();

$this->assertEquals(42, $mock->foo());
}

}

Please avoid using this answer as much as possible especially when testing newly written code. If you find yourself
requiring a class to be only partially mocked then that is a code smell for a class that is likely doing too much. An
example of when this is being done is why you are testing a class that has a singular method that has a lot of side
effects that you want to mock while you allow the other methods to be called as normal. In this case that method that
you are desiring to mock should belong to a completely separate class. It is obvious by the very fact that you are able
to mock it without needing to mock other messages that it performs a different function.

34 Chapter 7. Answers

Phake - PHP Mocking Framework Documentation, Release 1.0.3

Even though partial mocking should be avoided with new code, it is often very necessary to allow creating tests while
refactoring legacy code, tests involving 3rd party code that can’t be changed, or new tests of already written code that
cannot yet be changed. This is precisely the reason why this answer exists and is also why it is not the default answer
in Phake.

7.3 Capturing a Return Value

Another tool in Phake for testing legacy code is the captureReturnTo() answer. This performs a function similar
to argument capturing, however it instead captures what the actual method of a mock object returns to the variable
passed as its parameter. Again, this should never be needed if you are testing newly written code. However I have ran
across cases several times where legacy code calls protected factory methods and the result of the method call is never
exposed. This answer gives you a way to access that variable to ensure that the factory was called and is operating
correctly in the context of your method that is being tested.

7.4 Answer Callbacks

While the answers provided in Phake should be able to cover most of the scenarios you will run into when using mocks
in your unit tests there may occasionally be times when you need more control over what is returned from your mock
methods. When this is the case, you can use a callback answer. These do generally increase the complexity of tests
and you really should only use them if you won’t know what you need to return until call time.

You can specify a callback answer using the thenReturnCallback method. This argument takes a callback or a closure.
The callback will be passed the same arguments as were passed to the method being stubbed. This allows you to use
them to help determine the answer.

class MyClassTest extends PHPUnit_Framework_TestCase
{

public function testCallback()
{

$mock = Phake::mock('MyClass');
Phake::when($mock)->foo()->thenReturnCallback(function ($val) { return $val *

→˓2; });

$this->assertEquals(42, $mock->foo(21));
}

}

7.5 Custom Answers

You can also create custom answers. All answers in Phake implement the Phake_Stubber_IAnswer interface.
This interface defines a single method called getAnswer() that can be used to return what will be returned from a
call to the method being stubbed. If you need to get access to how the method you are stubbing was invoked, there
is a more complex set of interfaces that can be implemented: Phake_Stubber_Answers_IDelegator and
Phake_Stubber_IAnswerDelegate.

Phake_Stubber_Answers_IDelegator extends Phake_Stubber_IAnswer and defines an additional
method called processAnswer() that is used to perform processing on the results of getAnswer() prior to
passing it on to the stub’s caller. Phake_Stubber_IAnswerDelegate defines an interface that allows you to
create a callback that is called to generate the answer from the stub. It defines getCallBack() which allows you
to generate a PHP callback based on the object, method, and arguments that a stub was called with. It also defines

7.3. Capturing a Return Value 35

Phake - PHP Mocking Framework Documentation, Release 1.0.3

getArguments() which allows you to generate the arguments that will be passed to the callback based on the
method name and arguments the stub was called with.

36 Chapter 7. Answers

CHAPTER 8

Method Parameter Matchers

The verification and stubbing functionality in Phake both rely heavily on parameter matching to help the system
understand exactly which calls need to be verified or stubbed. Phake provides several options for setting up parameter
matches.

The most common scenario for matching parameters as you use mock objects is matching on equal variables For this
reason the default matcher will ensure that the parameter you pass to the mock method is equal (essentially using the
‘==’ notation) to the parameter passed to the actual invocation before validating the call or returning the mocked stub.
So going back to the card game demonstration from the introduction. Consider the following interface:

interface DealerStrategy
{

public function deal(CardCollection $deck, PlayerCollection $players);
}

Here we have a deal() method that accepts two parameters. If you want to verify that deal() was called, chances
are very good that you want to verify the the parameters as well. To do this is as simple as passing those parameters
to the deal() method on the Phake::verify($deal) object just as you would if you were calling the actual
deal() method itself. Here is a short albeit silly example:

//I don't have Concrete versions of
// CardCollection or PlayerCollection yet
$deck = Phake::mock('CardCollection');
$players = Phake::mock('PlayerCollection');

$dealer = Phake::mock('DealerStrategy');

$dealer->deal($deck, $players);

Phake::verify($dealer)->deal($deck, $players);

In this example, if I were to have accidentally made the call to deal() with a property that was set to null as the first
parameter then my test would fail with the following exception:

37

Phake - PHP Mocking Framework Documentation, Release 1.0.3

Expected DealerStrategy->deal(equal to
<object:CardCollection>, equal to <object:PlayerCollection>)
to be called exactly 1 times, actually called 0 times.
Other Invocations:

PhakeTest_MockedClass->deal(<null>,
equal to <object:PlayerCollection>)

Determining the appropriate method to stub works in exactly the same way.

There may be cases when it is necessary to verify or stub parameters based on something slightly more complex then
basic equality. This is what we will talk about next.

8.1 Using PHPUnit Matchers

Phake was developed with PHPUnit in mind. It is not dependent on PHPUnit, however if PHPUnit is your testing
framework of choice there is some special integration available. Any constraints made available by the PHPUnit
framework will work seamlessly inside of Phake. Here is an example of how the PHPUnit constraints can be used:

class TestPHPUnitConstraint extends PHPUnit_Framework_TestCase
{

public function testDealNumberOfCards()
{

$deck = Phake::mock('CardCollection');
$players = Phake::mock('PlayerCollection');

$dealer = Phake::mock('DealerStrategy');
$dealer->deal($deck, $players, 11);

Phake::verify($dealer)
->deal($deck, $players, $this->greaterThan(10));

}
}

I have added another parameter to my deal() method that allows me to specify the number of cards to deal to each
player. In the test above I wanted to verify that the number passed to this parameter was greater than 10.

For a list of the constraints you have available to you through PHPUnit, I recommend reading the PHPUnit’s docu-
mentation on assertions and constraints. Any constraint that can be used with assertThat() in PHPUnit can also
be used in Phake.

8.2 Using Hamcrest Matchers

If you do not use PHPUnit, Phake also supports Hamcrest matchers. This is in-line with the Phake’s design goal of
being usable with any testing framework. Here is a repeat of the PHPUnit example, this time using SimpleTest and
Hamcrest matchers.

class TestHamcrestMatcher extends UnitTestCase
{

public function testDealNumberOfCards()
{

$deck = Phake::mock('CardCollection');
$players = Phake::mock('PlayerCollection');

(continues on next page)

38 Chapter 8. Method Parameter Matchers

https://phpunit.de/manual/current/en/appendixes.assertions.html#appendixes.assertions.assertThat.tables.constraints
https://github.com/hamcrest/hamcrest-php#this-is-the-php-port-of-hamcrest-matchers

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

$dealer = Phake::mock('DealerStrategy');
$dealer->deal($deck, $players, 11);

Phake::verify($dealer)->deal($deck, $players, greaterThan(10));
}

}

8.3 Wildcard Parameters

Frequently when stubbing methods, you do not really care about matching parameters. Often times matching every
parameter for a stub can result in overly brittle tests. If you find yourself in this situation you can use Phake’s shorthand
stubbing to instruct Phake that a mock should be stubbed on any invocation. You could also use it to verify a method
call regardless of parameters. This is not a very common use case but it is possible.

To specify that a given stub or verification method should match any parameters, you call the method you are stubbing
or mocking as a property of Phake::when() or Phake::verify(). The code below will mock any invocation
of $obj->foo() regardless of parameters to return bar.

class FooTest extends PHPUnit_Framework_TestCase
{

public function testAddItemsToCart()
{

$obj = Phake::mock('MyObject');

Phake::when($obj)->foo->thenReturn('bar');

$this->assertEquals('bar', $obj->foo());
$this->assertEquals('bar', $obj->foo('a parameter'));
$this->assertEquals('bar', $obj->foo('multiple', 'parameters'));

}
}

If you are familiar with Phake::anyParameters() then you will recognize that the shorthand functionality is
really just short hand of Phake::anyParameters(). You can still use Phake::anyParameters() but it
will likely be deprecated at some point in the future.

8.3.1 Default and Variable Parameters

Wildcards can also come in handy when stubbing or verifying methods with default parameters or variable parameters.
In addition to Phake::anyParameters(), Phake::ignoreRemaining() can be used to instruct Phake to
not attempt to match any further parameters.

A good example of where this could be handy is if you are mocking or verifying a method where the first parameter is
important to stubbing but maybe the remaining parameters aren’t. The code below stubs a factory method where the
first parameter sets an item’s name, but the remaining parameters are all available as defaults.

class MyFactory
{

public function createItem($name, $color = 'red', $size = 'large')
{

//...
}

(continues on next page)

8.3. Wildcard Parameters 39

Phake - PHP Mocking Framework Documentation, Release 1.0.3

(continued from previous page)

}

class MyTest extends PHPUnit_Framework_TestCase
{

public function testUsingItemFactory()
{

$factory = Phake::mock('MyFactory');

$factory->createItem('Item1', 'blue', 'small');

//Verification below will succeed
Phake::verify($factory)->createItem('Item1', Phake::ignoreRemaining());

}
}

8.4 Parameter Capturing

As you can see there are a variety of methods for verifying that the appropriate parameters are being passed to methods.
However, there may be times when the prebuilt constraints and matchers simply do not fit your needs. Perhaps there
is method that accepts a complex object where only certain components of the object need to be validated. Parameter
capturing will allow you to store the parameter that was used to call your method so that it can be used in assertions
later on.

Consider the following example where I have defined a getNumberOfCards() method on the
CardCollection interface.

interface CardCollection
{

public function getNumberOfCards();
}

I want to create new functionality for a my poker dealer strategy that will check to make sure we are playing with
a full deck of 52 cards when the deal() call is made. It would be rather cumbersome to create a copy of a
CardCollection implementation that I could be sure would match in an equals scenario. Such a test would
look something like this.

Please note, I do not generally advocate this type of design. I prefer dependency injection to instantiation. So please
remember, this is not an example of clean design, simply an example of what you can do with argument capturing.

class MyPokerGameTest extends PHPUnit_Framework_TestCase
{

public function testDealCards()
{

$dealer = Phake::mock('MyPokerDealer');
$players = Phake::mock('PlayerCollection');

$cardGame = new MyPokerGame($dealer, $players);

Phake::verify($dealer)->deal(Phake::capture($deck), $players);

$this->assertEquals(52, $deck->getNumberOfCards());
}

}

40 Chapter 8. Method Parameter Matchers

Phake - PHP Mocking Framework Documentation, Release 1.0.3

You can also capture parameters if they meet a certain condition. For instance, if someone mistakenly passed an array
as the first parameter to the deal() method then PHPUnit would fatal error out. This can be protected against by
using the the Phake::capture()->when() method. The when() method accepts the same constraints that
Phake::verify() accepts. Here is how you could leverage that functionality to bulletproof your captures a little
bit.

class MyBetterPokerGameTest extends PHPUnit_Framework_TestCase
{

public function testDealCards()
{

$dealer = Phake::mock('MyPokerDealer');
$players = Phake::mock('PlayerCollection');

$cardGame = new MyPokerGame($dealer, $players);

Phake::verify($dealer)->deal(
Phake::capture($deck)

->when($this->isInstanceOf('CardCollection')),
$players

);

$this->assertEquals(52, $deck->getNumberOfCards());
}

}

This could also be done by using PHPUnit’s assertions later on with the captured parameter, however this also has a
side effect of better localizing your error. Here is the error you would see if the above test failed.

Exception: Expected MyPokerDealer->deal(<captured parameter>,
equal to <object:PlayerCollection>) to be called exactly 1
times, actually called 0 times.
Other Invocations:

PhakeTest_MockedClass->deal(<array>,
<object:PlayerCollection>)

It should be noted that while it is possible to use argument capturing for stubbing with Phake::when() I would
discourage it. When stubbing a method, you should only be concerned about making sure an expected value is returned.
Argument capturing in no way helps with that goal. In the worst case scenario, you will have some incredibly difficult
test failures to diagnose.

Beginning in Phake 2.1 you can also capture all values for a given parameter for every matching invocation. For
instance imagine if you have a method $foo->process($eventManager) that should send a series of events.

class Foo
{

// ...
public function process(Request $request, EventManager $eventManager)
{

$eventManager->fire(new PreProcessEvent($request));
// ... do stuff
$eventManager->fire(new PostProcessEvent($request, $result));

}
}

If you wanted to verify different aspects of the $eventManager->fire() calls this would have been very difficult
and brittle using standard argument captors. There is now a new method Phake::captureAll() that can be used
to capture all otherwise matching invocations of method. The variable passed to Phake::captureAll() will be
set to an array containing all of the values used for that parameter. So with this function the following test can be

8.4. Parameter Capturing 41

Phake - PHP Mocking Framework Documentation, Release 1.0.3

written.

class FooTest
{

public function testProcess()
{

$foo = new Foo();
$request = Phake::mock('Request');
$eventManager = Phake::mock('EventManager');

$foo->process($request, $eventManager);

Phake::verify($eventManager, Phake::atLeast(1))->fire(Phake::captureAll(
→˓$events));

$this->assertInstanceOf('PreProcessEvent', $events[0]);
$this->assertEquals($request, $events[0]->getRequest());

$this->assertInstanceOf('PostProcessEvent', $events[1]);
$this->assertEquals($request, $events[1]->getRequest());

}
}

8.5 Custom Parameter Matchers

An alternative to using argument capturing is creating custom matchers. All parameter matchers implement the inter-
face Phake_Matchers_IArgumentMatcher. You can create custom implementations of this interface. This is
especially useful if you find yourself using a similar capturing pattern over and over again. If I were to rewriting the
test above using a customer argument matcher it would look something like this.

class FiftyTwoCardDeckMatcher implements Phake_Matchers_IArgumentMatcher
{

public function matches(&$argument)
{

return ($argument instanceof CardCollection
&& $argument->getNumberOfCards() == 52);

}

public function __toString()
{

return '<object:CardCollection with 52 cards>';
}

}

class MyBestPokerGameTest extends PHPUnit_Framework_TestCase
{

public function testDealCards()
{

$dealer = Phake::mock('MyPokerDealer');
$players = Phake::mock('PlayerCollection');

$cardGame = new MyPokerGame($dealer, $players);

Phake::verify($dealer)->deal(new FiftyTwoCardDeckMatcher(), $players);
}

}

42 Chapter 8. Method Parameter Matchers

CHAPTER 9

Configuration

There are some options you can use to configure and customize Phake. None of these options are required and Phake
can always just be used straight out of the box, however some configuration options are available to provide more
convenient integration with PHPUnit and ability to debug your mock objects.

9.1 Setting the Phake Client

While Phake does not have a direct dependency on PHPUnit, there is a PHPUnit specific client that improves error re-
porting and allows you to utilize strict mode with PHPUnit. Without using the PHPUnit client, any failed verifications
will result in an errored test. Generally speaking, with PHPUnit, the error result is reserved for bad tests, not failed
tests.

The other issue you would run into when using Phake with PHPUnit without using the PHPUnit Phake client is that
any test runs utilizing the –strict flag will fail when an assertion is not recorded. By default Phake does not register
assertions with PHPUnit. When the PHPUnit client is used however, the assertions are recorded and –strict mode can
be safely used with your tests.

To enable the PHPUnit Phake client, you can register it in your test bootstrap.

require_once('Phake.php');
Phake::setClient(Phake::CLIENT_PHPUNIT);

9.2 Setting the Mock Class Loader

When generating mock classes, Phake will load them into memory utilizing the PHP eval() function. This can
make the code inside of mock classes difficult to debug or diagnose when errors occur in this code. Using the
Phake::setMockLoader() method you can change this behavior to instead dump the generated class to a file
and then require that file. This will allow for accurate and easily researchable errors when running tests. This shouldn’t
typically be required for most users of Phake, however if your are having errors or working on code for Phake itself it
can be incredibly useful.

43

Phake - PHP Mocking Framework Documentation, Release 1.0.3

Phake::setMockLoader() accepts a single parameter of type Phake_ClassGenerator_ILoader. The
default behavior is contained in the Phake_ClassGenerator_EvalLoader class. If you would instead like to
dump the classes to files you can instead use the Phake_ClassGenerator_FileLoader class. The constructor
accepts a single parameter containing the directory you would like to dump the classes to. The classes will be stored
in files with the same name as the generated class.

Below is an example of the code required to dump mock classes into the /tmp folder.

require_once('Phake.php');
require_once('Phake/ClassGenerator/FileLoader.php');
Phake::setMockLoader(new Phake_ClassGenerator_FileLoader('/tmp'));

44 Chapter 9. Configuration

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

45

	Introduction to Phake
	Getting Started
	Composer Install
	Install from Source
	Support

	Creating Mocks
	Partial Mocks
	Calling Private and Protected Methods on Mocks

	Method Stubbing
	How Phake::when() Works
	Overwriting Existing Stubs
	Resetting A Mock’s Stubs
	Stubbing Multiple Calls
	Stubbing Consecutive Calls
	Stubbing Reference Parameters
	Partial Mocks
	Setting Default Stubs
	Stubbing Magic Methods

	Method Verification
	Verifying Method Parameters
	Verifying Multiple Invocations
	Verifying Calls Happen in a Particular Order
	Verifying No Interaction with a Mock so Far
	Verifying No Further Interaction with a Mock
	Verifying No Unverified Interaction with a Mock
	Verifying Magic Methods

	Mocking Static Methods
	Answers
	Throwing Exceptions
	Calling the Parent
	Capturing a Return Value
	Answer Callbacks
	Custom Answers

	Method Parameter Matchers
	Using PHPUnit Matchers
	Using Hamcrest Matchers
	Wildcard Parameters
	Parameter Capturing
	Custom Parameter Matchers

	Configuration
	Setting the Phake Client
	Setting the Mock Class Loader

	Indices and tables

